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Abstract — The electromagnetic interference between the 
electronic systems or their components influence the 
performance of the systems. For that reason, it is important to 
model these interferences in order to optimize the position of 
the systems or their components. In this paper, a method is 
proposed to construct the equivalent model of systems. The 
proposed method is based on the multipolar expansion by 
representing the radiated emission of generic structures in a 
spherical reference (r,θθθθ,φ). Some results are presented 
illustrating our method. 

I. INTRODUCTION 

The objective of this work is to propose a methodology 
suitable for obtaining models that could represent the 
radiated field of a system or their components, for a wide 
range of frequencies, useful to evaluate the system 
performance. These models of sources will be used in a 3D 
computed code in order to modelize sources, and also to 
estimate the coupling effects between the systems or system 
components, basically the mutual inductance, considering 
the influence of parameters, such as the distance between 
models. 

As the distance between systems is much smaller than 
the wavelength related to the frequencies of power 
electronic applications, usually f < 100MHz, a quasi static 
approach can be considered. It is the case of a magnetic 
source, in which the capacitive effects are negligible. 

The multipolar expansion is proposed to model the 
radiated field of the systems. It can be used to represent the 
radiation of generic structures (coils, capacitors, tracks…). 

II. THEORY OF MULTIPOLAR EXPANSION 

The multipolar expansion can be used to represent the 
electromagnetic fields in 3D, assuming that the field is 
computed outside a sphere of radius r that contains the 
equivalent source. 

In the case of outgoing radiated emission source, the 
multipolar expansion allows expressing the electric and 
magnetic fields as [1]: 
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Where 

- η � �µ� is the intrinsic impedance of the considered 

environment. 
- �����  and ����� are the magnetic and electric multipoles, 

respectively. The coefficients �����  describe the strength of 
the transverse-electric (TE) components of the radiated 
field, while coefficients ����� describe the strength of the 
transverse-magnetic (TM) components. Each of them 
corresponds to the equivalent radiated source. Thus, these 
coefficients are the parameters to be identified to 
characterize the equivalent model of the radiated field 
components. 

- F1nm and F2nm are the vector spherical harmonics which 
are a solution of Maxwell’s equations in free space, 
excluding the sphere that involves the sources. 

- n the degree and m the azimuthal order. 
In our study, only the magnetic source in the near-field 

is considered. That is ����� = 0 and it is assumed that the 
electric field component is low when compared with the 
magnetic field. Thus, the determination of the �����  (wrote ��� in the following) is carried out by the component 
radial � , in near field [1]: 
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where )�� are the normalized spherical harmonics  
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One of the main properties of the multipolar expansion 
to be emphasized is the decreasing of the order n terms with 
rn+2. This insures a hierarchy between each order of the 
decomposition. The larger the distance to the source is, the 
fewer are the terms required to reconstruct the field. In this 
way, the accuracy of the mutual inductance computation is 
related with the choice of the maximum order description, 
noted Nmax. It should be observed that there are (2n+1) 
components for each n order. For an order source equal to 
Nmax, it will correspond Nmax (Nmax+2) components, but due 
to the aforementioned property (hierarchy between each 
order), Nmax can be limited, based on the present experience 
of the authors, up to 5. 

III.  COMPUTING THE MUTUAL INDUCTANCE  

A. Mutual inductance 
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3. ELECTROMAGNETIC COMPATIBILITY  

Using the equivalent radiated field source model, we 
can determine the coupling between two equivalent sources 
through the computation of the mutual inductance. Figure 1 
illustrates the configurations regarding the representation of 
two radiating sources (Models 1 and 2). 

 
Fig. 1. Representation of two radiating sources 

The computation of the mutual impedance between 
source 1 and source 2 can be expressed in terms of the 
electrical field E and magnetic field H for each source [1]: 
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When the spheres which contain each of the sources do 
not intersect, the mutual impedance can be expressed 
according to the coefficients of the multipolar expansion: 
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The expression of the mutual inductance is: 
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i1 and i2 are respectively the current that flows in 
sources 1 and 2, and k is the phase constant. 

The coefficients associated to the magnetic transverse 
modes of the multipolar expansion of sources 1 and 2 must 
be expressed in the same reference: a translation is required, 
e.g. the coefficients of the source 2 can be expressed in the 
reference of the source 1. 

B. Translation and rotation of the coefficients ��� 

The rotation of the coefficients ��� is obtained by 
applying the Euler angle reference formula. It should be 
mentioned that only two angles are necessary because of 
the spherical symmetry. The details of the methodology for 
determining the rotation matrices for complex or real 
coefficients ��� are presented in [2]-[3]. 

The translation is based on the « Addition Theorem for 
Vector Spherical Harmonics » [3]. The expression of the 
translated coefficients  �K�� involves the Wigner 3j symbol 
according to quantum mechanics [4]. 

IV.  NUMERICAL VALIDATION 

To validate the method of computing the mutual 
inductance between two equivalent radiated sources of the 
components, the analytical result was compared to the 
numerical result computed by Flux® and the analytic result 
[5]. We consider two loops, C1 and C2 with a radius 
“Rspire” of 0.1m, separated by r, both located on the Oz-
axis as shown in Fig. 2.  

To compute the mutual inductance, it is important that 

the spheres that included each source don’t intersect, for 
that reason a minimum distance equal to 2*Rspire between 
their center must be respected. 

In Fig. 2, the results between the method using a 
truncated multipolar expansion and the numerical method 
in Flux® and the analytic method are comparable. 

To compute the mutual inductance for a small distance 
between the two loops, the number of terms required to 
describe the complexity of the source increases. For that 
reason, at distance of r = 0.2m the error is greater for n = 3 
than n = 5. 

 
Fig. 2. Comparison between spherical harmonics mutual inductance result 
and Flux®, analytical result up to the near-field distance limit at 200MHz 

V. CONCLUSION 

The presented methodology enables the evaluation of 
coupling parameters of systems by using equivalent 
emission sources. This method is composed by two steps. 
At first, the equivalent sources which represent the radiated 
field system using the multipolar expansion representation 
are identified. It can be obtained by a numerical or an 
experimental approach [6]. Secondly, the equivalent 
sources will be used to compute the coupling between them, 
which was represented by a mutual inductance as a function 
of the distance that separates them. Other cases of 
validation and the study that computes the mutual 
inductance when the distance between the sources is very 
small will be presented in the final paper. 
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